Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.

نویسندگان

  • Akitoshi Hayashi
  • Kousuke Noi
  • Atsushi Sakuda
  • Masahiro Tatsumisago
چکیده

Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safety, long-cycle lives and versatile geometries. Rechargeable sodium batteries are more suitable than lithium-ion batteries, because they use abundant and ubiquitous sodium sources. Solid electrolytes are critical for realizing all-solid-state sodium batteries. Here we show that stabilization of a high-temperature phase by crystallization from the glassy state dramatically enhances the Na(+) ion conductivity. An ambient temperature conductivity of over 10(-4) S cm(-1) was obtained in a glass-ceramic electrolyte, in which a cubic Na(3)PS(4) crystal with superionic conductivity was first realized. All-solid-state sodium batteries, with a powder-compressed Na(3)PS(4) electrolyte, functioned as a rechargeable battery at room temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and develop...

متن کامل

Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions.

Solid electrolytes with sufficiently high conductivities and stabilities are the elusive answer to the inherent shortcomings of organic liquid electrolytes prevalent in today's rechargeable batteries. We recently revealed a novel fast-ion-conducting sodium salt, Na2B12H12, which contains large, icosahedral, divalent B12H122- anions that enable impressive superionic conductivity, albeit only abo...

متن کامل

Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor

All-solid-state sodium-ion batteries are promising candidates for large-scale energy storage applications. The key enabler for an all-solid-state architecture is a sodium solid electrolyte that exhibits high Na(+) conductivity at ambient temperatures, as well as excellent phase and electrochemical stability. In this work, we present a first-principles-guided discovery and synthesis of a novel C...

متن کامل

Aqueous Stability of Alkali Superionic Conductors from First-Principles Calculations

Ceramic alkali superionic conductor solid electrolytes (SICEs) play a prominent role in the development of rechargeable alkali-ion batteries, ranging from replacement of organic electrolytes to being used as separators in aqueous batteries. The aqueous stability of SICEs is an important property in determining their applicability in various roles. In this work, we analyze the aqueous stability ...

متن کامل

Computer Modeling of Crystalline Electrolytes – Lithium Thiophosphates and Phosphates

During the last 5 years, lithium thiophosphate solid electrolyte materials have been developed[1, 2, 3, 4, 5] for use in all-solid-state rechargeable batteries. In particular, crystalline Li7P3S11 has been characterized as a superionic conducting material[2, 3, 4, 5] possessing room temperature conductivities as high as 10−3 S/cm, which is 1000 times greater than that of the commercial solid el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012